Markov Model Feat R Code
R
#Load library and data
library(ChannelAttributionPro)
Data = read.csv("https://app.channelattribution.io/data/data_paths_w_features.csv",sep=";")
#Set your password
password="yourpassword"
#Define the type of each feature: 'categorial' or 'numeric'
D_feat_types=list('region'='categorial','segment'='categorial','seconds_to_last_touch'='numeric','position'='categorial')
#Train Markov model with external features
res=markov_model_feat(Data,D_feat_types,server="http://app.channelattribution.net",password=password)
#Return transaction-level attribution
print(res$attribution)
#Return estimated weigths for each feature at path level
print(res$weights_attr)
#Return predictive performance of each feature
print(res$weights_feat)