Markov Model Feat Python Code
Python
#Load library and data
import pandas as pd
from ChannelAttributionPro import *
import urllib.request
Data = pd.read_csv("https://app.channelattribution.io/data/data_paths_w_features.csv",sep=";")
#Set your password
password="yourpassword"
#Define the type of each feature: 'categorial' or 'numeric'
D_feat_types={'region':'categorial','segment':'categorial','seconds_to_last_touch':'numeric','position':'categorial'}
#Train Markov model with external features
res=markov_model_feat(Data,D_feat_types,server="http://app.channelattribution.io",password=password)
#Return transaction-level attribution
print(res["attribution"])
#Return estimated weigths for each feature at path level
print(res["weights_attr"])
#Return predictive performance of each feature
print(res["weights_feat"])