library(ChannelAttributionPro)
data(PathData)
password="yourpassword"
res=markov_model(Data, var_path="path", var_conv="total_conversions",var_null="total_null",
flg_write_paths=1,password=password)
mta_path_attribution=res$attribution
mta_path_attribution=mta_path_attribution[,c("path_id","path","channel","total_conversions")]
colnames(mta_path_attribution)=c("path_id","path","channel","attribution")
print(mta_path_attribution,max=100)
mmm_attribution=data.frame(channel=c("alpha","eta","iota","beta","theta","lambda","epsilon","omega"),
attribution=c(4826.18,2757.64,2574.60,1454.74,913.53,418.50,407.34,800.00))
print(mmm_attribution)
final_path_attribution=combine_mta_mmm(mta_path_attribution, mmm_attribution, password=password)
print(final_path_attribution,max=100)
prior_weights_mta=data.frame(channel=c("alpha"),mta_weight=c(0.2))
final_path_attribution=combine_mta_mmm(mta_path_attribution, mmm_attribution,
prior_weights_mta=prior_weights_mta, password=password)
print(final_path_attribution,max=100)