next_best_action
Python
### Import libraries
from ChannelAttributionPro import *
### Set your token
token="yourtoken"
### Load data
Data = pd.read_csv("https://app.channelattribution.io/data/Data.csv",sep=";")
### Train the model
Params=next_best_action_train(Data, var_path="path", var_conv="total_conversions", var_null="total_null", row_sep=";", cha_sep=">")
print(Params)
#Params is a data.frame containing all the conversion rates estimated using a combination of Markov models.
#Params can be stored and used to predict next best action given a path
### Predict next best action for a given path
new_path="beta > alpha"
res=next_best_action(new_path,sep=">",Params=Params)
print(res)
#res contains the suggested next action, its conversion rate and the conversion rates for all the available actions