
Davide Altomare and David Loris

2022-05-26

rego is a machine learning algorithm for predicting and imputing time series. It can
automatically set all the parameters needed, thus in the minimal con�guration it only
requires the target variable and the regressors if present. It can address large problems
with hundreds or thousands of regressors and problems in which the number of regres-
sors is greater than the number of observations. Moreover it can be used not only with
time series but also with any other real valued target variable. The algorithm imple-
mented includes a bayesian stochastic search methodology for model selection and a
robust estimation based on bootstrapping. rego is fast because all the code is C++.

rego is a side project of ChannelAttribution: a popular machine learning library con-
taining algorithms for marketing attribution with more than 200.000 downloads.

channelattribution.io

1 Algorithm

rego adapts the bayesian stochastich search algorithm in ([1]) for choosing the best SARIMAX model that �ts
your Data.

SARIMAX model is a complete linear regression model because it includes exogenous variables, variables
built considering past values of the target variable, seasonalities and variables built considering past forecasting
errors. A compact way to express a general SARIMAX model is:

Φ(B)pΦ(Bm)P ∆d(∆m)Dyy = βX + Θ(B)q + Θ(Bm)Qεt

t = 1, . . . , T
(1)

where

yt is the target variable at time t

Xt is a K × 1 vector of regressors at time t

εt ∼ N (0, σ2)

t =1, . . . , T

β is a 1×K vector of regression parameters

(2)

and operators Φ(B)p, ∆d, Θ(B)q, Φ(Bm)P , (∆m)D and Θ(Bm)Q are well explained in [[3]].
In a more synthetic way it is also indicated with:

SARIMAX(p, d, q)(P,D,Q)m (3)

1

https://www.linkedin.com/in/davide-altomare-29079a3a/
https://www.linkedin.com/in/david-thomas-loris-2b7950/
https://channelattribution.io
https://channelattribution.io

Figure 1:

A SARIMAX has K + p + q + P + Q parameters. It is not di�cult for a SARIMAX model to reach a high
number of parameters. This is quite problematic because an high number of parameters could led to over�tting
if the number of the observations are not high enough. Thus choosing the best parsimonius model that �ts the
data is crucial for having good predictions and realistic con�dence intervals. rego avoids over�tting caused by
high number of parameters thanks to its bayesian stochastic search algorithm oriented to sparsity, which can
be thought as a bayesian alternative to LASSO.

Moreover choosing the best regression model between all the possible regression models we could �t for our
data is not easy. We have seen that SARIMAX has K + p+ q+P +Q parameters and it means that we have:

K+p+q+P+Q∑
j=0

(
K + p+ q + P +Q

j

)
(4)

possible SARIMAX models that could be built for a generic usecase. For example if K + p+ q+P +Q is equal
to 30, our space of models has 1,073,741,824 possible SARIMAX. It could be not feasible to evaluate all the
models because it would require too much computational time. Thus an e�cient search algorithm is needed
for �nding the best model without evaluating all the models belonging to the space of models. With rego a
problem with K + p+ q + P +Q equal to 1000 can be solved in few seconds using a normal pc. If you want to
have details about the algorithm implemented in rego please refer to [[1]] and [[2]]

1.1 Example 1: Seasonal data

rego is a general forecasting algorithm that lets you to predict your real valued target variable and/or estimate
missing past values of it through the function regpred. You only need to feed regpred with a DataFrame
containing your target variable located at the �rst column and your exogenous variables in the other ones. In
the following example we will consider a seasonal target variable and we will use regpred to estimate some
missing values in the middle of the time series and to make predictions after the last available observation. First
we have to load libraries and data. Time series is shown in Figure 1

2

#Python

import pandas as pd

from rego import *

import plotly.express as px

Data=pd.read_csv("https://channelattribution.io/csv/Data_air.csv",sep=";",header=None)

Data.columns=["target"]

fig = px.line(Data,y="target")

fig.show()

#R

library(rego)

Data=read.csv("https://channelattribution.io/csv/Data_air.csv",sep=";",header=FALSE)

colnames(Data)=c("target")

plot(Data$target,type="l",ylab="target")

As you can see Data contains only the target variable and the series has a strong seasonality pattern. Now
we can apply regpred to our target.

#Python

res=regpred(Data)

pred=res["prediction"]

fig = px.line(pred)

fig.show()

#R

res=regpred(Data)

predictions=res$prediction

plot(predictions$real,type="l",ylim=c(min(predictions,na.rm=TRUE)*0.95,max(predictions,na.rm=TRUE)*1.05))

lines(predictions$predicted,col="blue")

lines(predictions$lower_bound,col="red")

lines(predictions$upper_bound,col="red")

Input parameters of regpred are explained in Table 1.
Output of regpred contains three DataFrames with �nal, forward and backward predictions. Each DataFrame

contains the columns described in Table 2.
Figure 2 gives a graphical representation of the output.

1.2 Example 2: High dimensional regression

Now we consider a regression problem with one target and 999 regressors each of them with 1000 observations.
The data has been generated using the following formula

yt = x175,t + x542,t + x815,t + εt εt ∼ N (0, 1) ∀t = 1, . . . , 1000

xk,t ∼ N (0, 1) ∀k = 1, . . . , 999 ∀t = 1, . . . , 1000
(5)

Data is a DataFrame containing the target variable at �rst position and the 999 regressors at position from
second to last column. First we load and visualize target:

#Python

import pandas as pd

from rego import *

import plotly.express as px

Data=pd.read_csv("https://channelattribution.io/csv/Data_sim_1000.csv",sep=",",header=None)

fig = px.line(Data.iloc[:,0])

fig.show()

3

Figure 2:

4

Figure 3:

5

Table 1: Input parameters
Data data.frame containing target variable at �rst column

and regressors if present from second to last column
from_lag minimum time lag to be considered in the autore-

gressive moving average part of the algorithm
max_lag maximum time lag to be considered in the autore-

gressive moving average part of the algorithm. If
"auto" then the algorithm will set a suitable value.
Set to 0 or NULL if you want to remove the autore-
gressive moving average part as in case of non time
series data

alpha signi�cance level for the con�dence interval produced
around predictions. If 0.05 then the algorithm will
calculate a 95% con�dence interval around predic-
tions

nsim number of bootstrap replications used for producing
con�dence interval around predictions

�g_print if 1 some information during the evaluation will be
printed

direction if "->" then only a forward prediction will be exe-
cuted, if "<-" then only a backward prediction will
be executed, if "<->" then both a forward than a
backward prediction will be executed if possible. For
imputing missing values is convenient to leave default
"<->"

�g_const if 1 then a constant is included into the model
�g_di� if 1 and no regressor is present then if the target

variable exhibits a trend, it is one-step di�erentiated
up to two times

model estimated models from a previous train to be used in
new data prediction without retraining

Table 2: Output: predictions
real observed values for the target variable
lower
bound

lower bound of the estimated con�dence interval for
predictions

predicted point-wise prediction for target variable
upper
bound

upper bound of the estimated con�dence interval for
predictions

#R

library(rego)

Data=read.csv("https://channelattribution.io/csv/Data_sim_1000.csv",sep=",",header=FALSE)

colnames(Data)=c("target",paste0("X",rep(1:999)))

plot(Data$target,type="l",ylab="target")

Figure 3 shows the target. Now we can apply rego to your Data.

#Python

res=regpred(Data)

pred=res["prediction"]

fig = px.line(pred)

fig.show()

6

Figure 4:

#R

res=regpred(Data)

predictions=res$prediction

plot(predictions$real,type="l",ylim=c(min(predictions,na.rm=TRUE)*0.95,max(predictions,na.rm=TRUE)*1.05))

lines(predictions$predicted,col="blue")

lines(predictions$lower_bound,col="red")

lines(predictions$upper_bound,col="red")

Figure 4 gives a graphical representation of the output.

References

[1] Altomare,Consonni,La Rocca (2011), Objective Bayesian Search of Gaussian DAG Models with Non-local
Priors.

[2] Berger, J. and Molina, G. (2005).Posterior model probabilities via pathbased pairwise priors. Statistica
Neerlandica 59, 3�15.

[3] A complete introduction to time series analysis with r sarima models, medium.com

7

https://econpapers.repec.org/paper/pavwpaper/140.htm
https://econpapers.repec.org/paper/pavwpaper/140.htm
https://www2.stat.duke.edu/~berger/papers/pathwise.pdf
https://www2.stat.duke.edu/~berger/papers/pathwise.pdf
https://medium.com/analytics-vidhya/a-complete-introduction-to-time-series-analysis-with-r-sarima-models-ff86d526d1d7

	Algorithm
	Example 1: Seasonal data
	Example 2: High dimensional regression

