
ChannelAttribution
Release 2.2.2

Davide Altomare, David Loris

Nov 06, 2025

CONTENTS:

1 Indices and tables 1

2 ChannelAttribution 3

Python Module Index 11

Index 13

i

ii

CHAPTER

ONE

INDICES AND TABLES

• genindex

• modindex

• search

1

ChannelAttribution, Release 2.2.2

2 Chapter 1. Indices and tables

CHAPTER

TWO

CHANNELATTRIBUTION

Markov Model for Online Multi-Channel Attribution Advertisers use a variety of online marketing channels to reach
consumers and they want to know the degree each channel contributes to their marketing success. This is called online
multichannel attribution problem. In many cases, advertisers approach this problem through some simple heuristics
methods that do not take into account any customer interactions and often tend to underestimate the importance of
small channels in marketing contribution. This package provides a function that approaches the attribution problem in
a probabilistic way. It uses a k-order Markov representation to identify structural correlations in the customer journey
data. This would allow advertisers to give a more reliable assessment of the marketing contribution of each channel. The
approach basically follows the one presented in Eva Anderl, Ingo Becker, Florian v. Wangenheim, Jan H. Schumann
(2014). Differently from them, we solved the estimation process using stochastic simulations. In this way it is also
possible to take into account conversion values and their variability in the computation of the channel importance. The
package also contains a function that estimates three heuristic models (first-touch, last-touch and linear-touch approach)
for the same problem.

ChannelAttribution.auto_markov_model(Data, var_path, var_conv, var_null, var_value=None,
max_order=10, roc_npt=100, plot=False, nsim_start=100000.0,
max_step=None, out_more=False, sep='>', ncore=1, nfold=10,
seed=0, conv_par=0.05, rate_step_sim=1.5, verbose=True,
flg_pro=True)

Parameters

• Data (DataFrame) – customer journeys.

• var_path (string) – column of Data containing paths.

• var_conv (string) – column of Data containing total conversions for each path.

• var_null (string) – column of Data containing total paths that do not lead to conversion.

• var_value (string, optional, default None) – column of Data containing revenue
for each path

• max_order (int, default 10) – maximum Markov Model order to be considered.

• roc_npt (int, default 100) – number of points to be used for the approximation of roc
curve.

• plot (bool, default True) – if True, a plot with penalized auc with respect to order will
be displayed.

• nsim_start (int, default 1e5) – minimum number of simulations to be used in com-
putation.

• max_step (int, default None) – maximum number of steps for a single simulated path.
if NULL, it is the maximum number of steps found into Data.

3

ChannelAttribution, Release 2.2.2

• out_more (bool, default False) – if True, transition probabilities between channels
and removal effects will be returned.

• sep (string, default ">") – separator between the channels.

• ncore (int, default 1) – number of threads to be used in computation.

• nfold (int, default 10) – how many repetitions to be used to verify if convergence has
been reached at each iteration.

• seed (int, default 0) – random seed. Giving this parameter the same value over differ-
ent runs guarantees that results will not vary.

• conv_par (double, default 0.05) – convergence parameter for the algorithm. The es-
timation process ends when the percentage of variation of the results over different repetions
is less than convergence parameter.

• rate_step_sim (double, default 0) – number of simulations used at each iteration is
equal to the number of simulations used at previous iteration multiplied by rate_step_sim.

• verbose (bool, default True) – if True, additional information about process conver-
gence will be shown.

• flg_pro (bool, default True) – if True, ChannelAttribution Pro banner is printed.

Returns

result: Dataframe
(column) channel_name : channel names (column) total_conversions : conversions at-
tributed to each channel (column) total_conversion_value : revenues attributed to each chan-
nel

transition_matrix
[DataFrame] (column) channel_from: channel from (column) channel_to : channel to (col-
umn) transition_probability : transition probability from channel_from to channel_to

removal_effects:
(column) channel_name : channel names (column) removal_effects_conversion :
removal effects for each channel calculated using total conversions (column) re-
moval_effects_conversion_value : removal effects for each channel calculated using revenues

Return type
list of DataFrames

Examples

Load Data

>>> import pandas as pd
>>> from ChannelAttribution import *
>>> Data = pd.read_csv('https://channelattribution.io/csv/Data.csv',sep=";")

Estimate an automatic Makov model

>>> auto_markov_model(Data, "path", "total_conversions", "total_null")

ChannelAttribution.choose_order(Data, var_path, var_conv, var_null, max_order=10, sep='>', ncore=1,
roc_npt=100, plot=True, flg_pro=True)

Find the minimum Markov Model order that gives a good representation of customers’ behaviour for data consid-
ered. It requires paths that do not lead to conversion as input. Minimum order is found maximizing a penalized
area under ROC curve.

4 Chapter 2. ChannelAttribution

ChannelAttribution, Release 2.2.2

Parameters

• Data (DataFrame) – customer journeys.

• var_path (string) – column of Data containing paths.

• var_conv (string) – column of Data containing total conversions for each path.

• var_null (string) – column of Data containing total paths that do not lead to conversion.

• max_order (int, default 10) – maximum Markov Model order to be considered.

• sep (string, default ">") – separator between the channels.

• ncore (int, default 1) – number of threads to be used in computation.

• roc_npt (int, default 100) – number of points to be used for the approximation of roc
curve.

• plot (bool, default True) – if True, a plot with penalized auc with respect to order will
be displayed.

• flg_pro (bool, default True) – if True, ChannelAttribution Pro banner is printed.

Returns

roc
[list DataFrame one for each order considered] (column) tpr: true positive rate (column) fpr:
false positive rate

auc
[DataFrame with the following columns] (column) order: markov model order (column) auc:
area under the curve (column) pauc: penalized auc

suggested order
[int] estimated best order

Return type
list

Examples

Estimate best makov model order for your data

Load Data

>>> import pandas as pd
>>> from ChannelAttribution import *
>>> Data = pd.read_csv('https://channelattribution.io/csv/Data.csv',sep=";")

>>> choose_order(Data, var_path="path", var_conv="total_conversions", var_null=
→˓"total_null")

ChannelAttribution.heuristic_models(Data, var_path, var_conv, var_value=None, sep='>', flg_pro=True)
Estimate three heuristic models (first-touch, last-touch and linear) from customer journey data.

Parameters

• Data (DataFrame) – customer journeys.

• var_path (string) – column of Data containing paths.

• var_conv (string) – column of Data containing total conversions for each path.

5

ChannelAttribution, Release 2.2.2

• var_value (string, optional, default None) – column of Data containing revenue
for each path.

• sep (string, default ">") – separator between the channels.

• flg_pro (bool, default True) – if True, ChannelAttribution Pro banner is printed.

Returns
(column) channel_name : channel names (column) first_touch_conversions : conversions at-
tributed to each channel using first touch attribution. (column) first_touch_value : revenues at-
tributed to each channel using first touch attribution. (column) last_touch_conversions : conver-
sions attributed to each channel using last touch attribution. (column) last_touch_value : rev-
enues attributed to each channel using last touch attribution. (column) linear_touch_conversions
: conversions attributed to each channel using linear attribution. (column) linear_touch_value :
revenues attributed to each channel using linear attribution.

Return type
DataFrame

Examples

Load Data

>>> import pandas as pd
>>> from ChannelAttribution import *
>>> Data = pd.read_csv('https://channelattribution.io/csv/Data.csv',sep=";")

Estimate heuristic models on total conversions

>>> heuristic_models(Data,"path","total_conversions")

Estimate heuristic models on total conversions and total revenues

>>> heuristic_models(Data,"path","total_conversions",\
>>> var_value="total_conversion_value")

ChannelAttribution.install_pro()

Interactive installer for ChannelAttribution Pro (Python wheel).

This helper: - Prompts you for a token; if you type an email instead, it requests a token

for that address and exits (so you can rerun with the token).

• Detects your OS/arch/Python, asks the build service for the correct wheel via HTTPS POST, resolves the
final wheel URL, and installs it with python -m pip.

• Sends exactly one final outcome notification to build_check_email.php (SUCCESS/ERROR) with a
short, client-trimmed info blob.

Notes

User interaction: - On start, it asks: “Enter your ChannelAttributionPro token. If you don’t have one,

enter your work/university email to request it:”

• If you enter a valid email, the function triggers a token email and returns immediately.

• If you enter a non-empty token, the installation flow proceeds.

• If you enter nothing, the function prints a message and returns.

6 Chapter 2. ChannelAttribution

ChannelAttribution, Release 2.2.2

Environment detection: - OS name: manylinux (Linux), macOS (macOS), Windows (Windows) - OS version:
Linux “2014” (ManyLinux2014), macOS “13” (amd64) or “15” (arm64), Windows “11” - Architecture: amd64
(x86_64) or arm64 (aarch64) - Python: running interpreter’s major.minor (e.g., 3.11)

Network behavior: - Builder request: HTTPS POST to https://app.channelattribution.io/genpkg/
genpkg.php

with {os, os_vers, arch, lang=python, lang_vers, replace=0, uctr=0, token}.

• Response handling: - 200 or 409 with JSON containing "pkg": direct wheel URL or a directory URL. - If
a directory is returned, the latest file is selected (prefers *.whl). - 401 or JSON error mentioning “invalid
token”: prints “Token non valid or expired. . . ” and returns.

• Installation: runs python -m pip install --prefer-binary on the resolved wheel URL.

• Final notification (always exactly once): POSTs to https://app.channelattribution.io/genpkg/
build_check_email.php with fields {token, action="SUCCESS"|"ERROR", info="<=8KiB
compact JSON-like"}.

Packages and proxies: - Auto-installs requests (and distro on Linux) into the current interpreter.

If not in a virtualenv, sets PIP_BREAK_SYSTEM_PACKAGES=1 to respect Debian/Ubuntu PEP 668.

• Honors standard system/proxy environment variables.

Output and errors: - Prints progress and a short system report if something goes wrong (OS, distro, Python,
compiler).

Support message includes info@channelattribution.io.

• On success it prints:

*** Package installed. Restart the session and try to import it with: import␣
→˓ChannelAttributionPro

• Returns None. Most error conditions are handled by printing and returning.

• May raise ValueError only if an email-like input is given but fails basic syntax validation.

Security notes: - Sends your token to the builder and in the final notification. - The info field is trimmed client-
side (~8 KiB) and HTML-escaped server-side before emailing. - No personal data is sent beyond the token and
generic environment traits.

Examples

>>> from ChannelAttribution import install_pro
>>> install_pro() # follow the prompt: paste token, or enter email to request one

ChannelAttribution.markov_model(Data, var_path, var_conv, var_value=None, var_null=None, order=1,
nsim_start=100000.0, max_step=None, out_more=False, sep='>',
ncore=1, nfold=10, seed=0, conv_par=0.05, rate_step_sim=1.5,
verbose=True, flg_pro=True)

Estimate a k-order Markov model from customer journey data. Differently from markov_model, this function
iterates estimation until a desidered convergence is reached and enables multiprocessing.

Parameters

• Data (DataFrame) – customer journeys.

7

ChannelAttribution, Release 2.2.2

• var_path (string) – column of Data containing paths.

• var_conv (string) – column of Data containing total conversions for each path.

• var_value (string, optional, default None) – column of Data containing revenue
for each path.

• var_null (string) – column of Data containing total paths that do not lead to conversion.

• order (int, default 1) – Markov model order.

• nsim_start (int, default 1e5) – minimum number of simulations to be used in com-
putation.

• max_step (int, default None) – maximum number of steps for a single simulated path.
if NULL, it is the maximum number of steps found into Data.

• out_more (bool, default False) – if True, transition probabilities between channels
and removal effects will be returned.

• sep (string, default ">") – separator between the channels.

• ncore (int, default 1) – number of threads to be used in computation.

• nfold (int, default 10) – how many repetitions to be used to verify if convergence has
been reached at each iteration.

• seed (int, default 0) – random seed. Giving this parameter the same value over differ-
ent runs guarantees that results will not vary.

• conv_par (double, default 0.05) – convergence parameter for the algorithm. The es-
timation process ends when the percentage of variation of the results over different repetions
is less than convergence parameter.

• rate_step_sim (double, default 0) – number of simulations used at each iteration is
equal to the number of simulations used at previous iteration multiplied by rate_step_sim.

• verbose (bool, default True) – if True, additional information about process conver-
gence will be shown.

• flg_pro (bool, default True) – if True, ChannelAttribution Pro banner is printed.

Returns

result: Dataframe
(column) channel_name : channel names (column) total_conversions : conversions at-
tributed to each channel (column) total_conversion_value : revenues attributed to each chan-
nel

transition_matrix
[DataFrame] (column) channel_from: channel from (column) channel_to : channel to (col-
umn) transition_probability : transition probability from channel_from to channel_to

removal_effects:
(column) channel_name : channel names (column) removal_effects_conversion :
removal effects for each channel calculated using total conversions (column) re-
moval_effects_conversion_value : removal effects for each channel calculated using revenues

Return type
list of DataFrames

8 Chapter 2. ChannelAttribution

ChannelAttribution, Release 2.2.2

Examples

Load Data

>>> import pandas as pd
>>> from ChannelAttribution import *
>>> Data = pd.read_csv('https://channelattribution.io/csv/Data.csv',sep=";")

Estimate a Makov model using total conversions

>>> markov_model(Data, "path", "total_conversions")

Estimate a Makov model using total conversions and revenues

>>> markov_model(Data, "path", "total_conversions", var_value="total_conversion_
→˓value")

Estimate a Makov model using total conversions, revenues and paths that do not lead to conversions

>>> markov_model(Data, "path", "total_conversions", var_value="total_conversion_
→˓value", var_null="total_null")

Estimate a Makov model returning transition matrix and removal effects

>>> markov_model(Data, "path", "total_conversions", var_value="total_conversion_
→˓value", var_null="total_null", out_more=True)

Estimate a Markov model using 4 threads

>>> markov_model(Data, "path", "total_conversions", var_value="total_conversion_
→˓value", ncore=4)

ChannelAttribution.transition_matrix(Data, var_path, var_conv, var_null, order=1, sep='>',
flg_equal=True, flg_pro=True)

Estimate a k-order transition matrix from customer journey data.

Parameters

• Data (DataFrame) – customer journeys.

• var_path (string) – column of Data containing paths.

• var_conv (string) – column of Data containing total conversions for each path.

• var_null (string) – column of Data containing total paths that do not lead to conversion.

• order (int, default 1) – Markov model order.

• sep (string, default ">") – separator between the channels.

• flg_equal (bool, default True) – if True, transitions from a channel to itself will be
considered.

• flg_pro (bool, default True) – if True, ChannelAttribution Pro banner is printed.

Returns

channels: Dataframe
(column) id_channel : channel ids (column) channel_name : channel names

9

ChannelAttribution, Release 2.2.2

transition_matrix
[DataFrame] (column) channel_from: id channel from (column) channel_to : id channel to
(column) transition_probability : transition probability from channel_from to channel_to

Return type
list of DataFrames

Examples

Load Data

>>> import pandas as pd
>>> from ChannelAttribution import *
>>> Data = pd.read_csv('https://channelattribution.io/csv/Data.csv',sep=";")

Estimate a second-order transition matrix using total conversions and paths that do not lead to conversion

>>> transition_matrix(Data, "path", "total_conversions", var_null="total_null",␣
→˓order=2)

10 Chapter 2. ChannelAttribution

PYTHON MODULE INDEX

c
ChannelAttribution, 3

11

ChannelAttribution, Release 2.2.2

12 Python Module Index

INDEX

A
auto_markov_model() (in module ChannelAttribution),

3

C
ChannelAttribution

module, 3
choose_order() (in module ChannelAttribution), 4

H
heuristic_models() (in module ChannelAttribution),

5

I
install_pro() (in module ChannelAttribution), 6

M
markov_model() (in module ChannelAttribution), 7
module

ChannelAttribution, 3

T
transition_matrix() (in module ChannelAttribution),

9

13

	Indices and tables
	ChannelAttribution
	Python Module Index
	Index

